iXBT Labs - Computer Hardware in Detail

Platform

Video

Multimedia

Mobile

Other

Latest News


 « Previous Day News Archive  

New Concept For Bendable Packaged Ultra-Thin Chips Presented

IMEC and its associated laboratory INTEC of the University of Ghent jointly developed a new process flow for ultra-thin chip packages resulting in bendable packaged chips of only 50µm thickness.

The process has been demonstrated with silicon chips thinned down to 20-30µm. Thanks to the very low thickness of the chip, polyimide layers and metal, a total thickness down to 50µm is achieved making the whole package bendable. The ultra-thin chip package can provide an interposer enabling testing of the chip before embedding. It offers a contact fan out with more relaxed pitches.

Thanks to its flexibility, the technology enables embedding of packaged chips in flexible boards empowering smart, highly-integrated, flexible electronic systems for a wide variety of applications such as smart textile and flexible displays. The process flow has been developed within the EU funded FP6 Integrated Project, SHIFT (Smart high-integration of flex technologies).

In detail the process flow is described as follows. The base substrate is a 20µm-thick polyimide layer spin-coated on a rigid glass carrier. For the fixation and the placement of the chips on the polyimide layer a bicyclobutane of less than 5µm is used as adhesive. Bicyclobutane is resistant to the high curing temperature of the top polyimide since its solvents evaporate during a pre-curing.

By placing the chips properly, either in vacuum or with a dispensed bicyclobutane, void-free bonds can be obtained. Current research focuses on the optimization of the chip placement on dispensed (pre-cured) bicyclobutane and on avoiding voids by controlling the dispensed quantity. In this way, no vacuum environment will be required.

After the cure of the bicyclobutane at 350°C, the chip is fixed on the polyimide layer. A covering polyimide layer is spin-coated on the fixed die with a thickness of 20µm. For contacting to the chip, contact openings to the bumps of the chips are laser drilled. By using a shaped laser beam, via diameters with a top diameter down to 20µm can be realized.

A top metal layer of 1µm TiW/Cu is sputtered and photolithographically patterned, metallizing the contacts to the chip and providing a fan out to the contacts of the chips. Finally, the whole package is released from the rigid carrier.

IMEC

 « Previous Day News Archive  

Write a comment below. No registration needed!




blog comments powered by Disqus

  Most Popular Reviews More    RSS  

AMD Phenom II X4 955, Phenom II X4 960T, Phenom II X6 1075T, and Intel Pentium G2120, Core i3-3220, Core i5-3330 Processors

Comparing old, cheap solutions from AMD with new, budget offerings from Intel.
February 1, 2013 · Processor Roundups

Inno3D GeForce GTX 670 iChill, Inno3D GeForce GTX 660 Ti Graphics Cards

A couple of mid-range adapters with original cooling systems.
January 30, 2013 · Video cards: NVIDIA GPUs

Creative Sound Blaster X-Fi Surround 5.1

An external X-Fi solution in tests.
September 9, 2008 · Sound Cards

AMD FX-8350 Processor

The first worthwhile Piledriver CPU.
September 11, 2012 · Processors: AMD

Consumed Power, Energy Consumption: Ivy Bridge vs. Sandy Bridge

Trying out the new method.
September 18, 2012 · Processors: Intel
  Latest Reviews More    RSS  

i3DSpeed, September 2013

Retested all graphics cards with the new drivers.
Oct 18, 2013 · 3Digests

i3DSpeed, August 2013

Added new benchmarks: BioShock Infinite and Metro: Last Light.
Sep 06, 2013 · 3Digests

i3DSpeed, July 2013

Added the test results of NVIDIA GeForce GTX 760 and AMD Radeon HD 7730.
Aug 05, 2013 · 3Digests

Gainward GeForce GTX 650 Ti BOOST 2GB Golden Sample Graphics Card

An excellent hybrid of GeForce GTX 650 Ti and GeForce GTX 660.
Jun 24, 2013 · Video cards: NVIDIA GPUs

i3DSpeed, May 2013

Added the test results of NVIDIA GeForce GTX 770/780.
Jun 03, 2013 · 3Digests
  Latest News More    RSS  

Platform  ·  Video  ·  Multimedia  ·  Mobile  ·  Other  ||  About us & Privacy policy  ·  Twitter  ·  Facebook


Copyright © Byrds Research & Publishing, Ltd., 1997–2011. All rights reserved.