Our recent research (as well as observations of our colleagues and users, who already tried these processors) proves that it's practically impossible to find real applications to detect the notorious TLB error in the first revision of Phenom processors on Agena core. Everything works fine! We can only guess why AMD made such a fuss about this bug and reduced the scope of CPU deliveries until the new revision. Perhaps, the company did not have enough time for thorough tests, engineers were afraid that the bug could really show up somewhere, and the fact that a bug was detected by a user instead of the manufacturer could have a negative effect on reputation. It must be noted that bugs in processors are not anything new. For example, the first revision of Core 2 Duo contained 67 bugs! When reporters paid attention to this fact, this document was removed from the Intel web site. No delays or reductions in deliveries followed. The company just promised to fix 20 out of 67 bugs in the nearest revisions. We still don't know whether the company fixed the remaining bugs, by the way. We only know that new bugs were added in the 45 nm revision. However, this fact will hardly affect Intel's plans, to say nothing about deliveries of already manufactured CPUs. You have the right to hold up this approach to cheating, but it will hardly damage Intel's reputation. What's important, your chances to face these bugs are purely theoretical, be it 45 nm Core 2 eXtreme QX9650 or Phenom. What does it mean in practice? The above mentioned QX9650 has a higher clock rate and performance than the existing Phenom products, of course. But despite all these factors, a Phenom processor can be used to assemble a good computer, which will be equal to a single QX9650 processor in price. What concerns the Phenom 9500, its retail prices started from $260 at the time this article was written, that is lower than the minimal price ($280) for the cheapest Core 2 Q6600. In other words, Phenom processors are quite competitive even now (they might have been even more attractive, if they had been delivered in sufficient volumes to lower retail prices). Why do I touch upon this issue in a motherboard review? Firstly, as you might have already noticed, we review processors and motherboards (in compliance with modern trends to unite these components into commercial platforms) in the same section. It's politically incorrect to skip usability issues of a given product. Because, (secondly) the most natural processors for motherboards on AMD 790FX are Phenom products (while inexpensive motherboards on AMD 790X or 770 are actively used with Athlons). Thirdly, this very motherboard currently comes (at the time this article was written) at the lowest price among motherboards on this chipset, which also sounds practical. OK, let's proceed to the main topic of our review. The central feature of this motherboard, which can be used by MSI as a competitive advantage, is alternating graphics and non-graphics slots. So you can build a Quad CrossFire system even with two-slot graphics cards, for example, Radeon HD 3870 with the reference cooler. However, the other devices in this case will have to be connected to peripheral ports only, because two PCI and PCIEx1 ports will be blocked. However, firstly, you can find almost any device now in the external modification for USB or FireWire. They will be more expensive, but this fact shouldn't confuse users with such high requirements. Secondly, a gaming computer with several graphics cards is not an all-purpose system, and it cannot be approached with general requirements. It's a specialized system used mostly for games. Users of such systems are likely to have other computers (for example, a notebook and a media center), so there is no need to install a built-in TV tuner or a professional sound card in this computer. Another peculiarity of this motherboard is that it uses Promise T3 as its additional SATA controller. It provides compatibility with Serial Attached SCSI drives. This interface has an advantage over SATA for workstations and servers, and it's backward compatible with SATA (that is SATA drives can be plugged to the SAS controller), while SAS devices can be connected to a SAS controller only. The only limitation here is compatibility with storage drives only, while the SAS standard itself supports a wider range of devices, for example, scanners. However, this feature is not used often in practice. The cooling system of the chipset consists of three heat sinks connected with heat pipes. The heat sink on the north bridge has the most interesting shape (MSI claims that such a shape is not only looking good, but also contributes to thermal efficiency). Besides, this heat sink and the one on field-effect transistors are in the air intake zone of the CPU cooler. Should we say that such a cooling system hardly gets warmer than the environment temperature working with a chipset with TDP=10 W (even though there is no need to cool the chipset to this temperature level)? However, engineers traditionally refer to the needs of overclockers, who may need their voltage regulator elements cool for higher stability. The retention module of the cooling system also produces a positive impression. Chipset bridges contact the heat sinks through thermal grease (dense, but sticky and soft). The contact with transistors of the voltage regulator is praiseworthy, imprints on the thermal gasket leave no doubts of its high quality. The 5-phase switching voltage regulator incorporates two field-effect transistors per channel, ten 820 uF capacitors and five 470 uF ones made by Panasonic. Following the modern trend, the motherboard uses only solid-state capacitors with polymeric electrolyte. The power circuits are very good. Despite the open chokes in some circuits, we heard no unwanted noise during our tests. PCB design allows to install the second network controller and a processor from Creative instead of the Realtek audio codec. As is well known, these addons traditionally correspond to Diamond motherboards from MSI. There is no such model in the MSI product line yet. However, judging by characteristics, the AMD 790FX chipset is here to stay. So MSI can add this modification in future. Motherboard dimensions - standard ATX (305x245 mm), nine-screw mount, all corners are firmly fixed. It should be noted that the only obsolete port in this motherboard is COM, and you will have to install it on the rear panel manually. The floppy connector is preserved. If you have to use a motherboard outside a PC case, you will be pleased with a couple of buttons to power on/off and reset the system. System monitoring (Fintek F71882FG, BIOS Setup)
Onboard ports, sockets, and connectors
Back panel (left to right, blockwise)
Package Contents
Integrated Controllers
The integrated audio quality was tested in 16 bit 44 kHz mode using RightMark Audio Analyzer 5.5 and the ESI Juli@ sound card:
General performance: Very good. It's the best implementation of this codec of all we've ever tested. Even "harmonic distortion + noise" is Good instead of Average, typical of integrated solutions. The box mentions improved quality of the integrated audio controller as one of CoreCell functions. It's difficult to understand how this chip (it's quite far from the codec itself, and we have always though that it has to do with system monitoring and expanding overclocking features in BIOS) can contribute to noise reduction (that's exactly what's written in the description). However, audio quality is indeed improved. Perhaps, it has nothing to do with the above mentioned chip. Proprietary technologies and peculiarities
Settings
We used BIOS 1.2 dated 21.12.07, the latest available BIOS version at the time of our tests. The mentioned BIOS parameters are available in this version, but the viability of non-standard settings hasn't been tested. All necessary functions for overclocking are available. However, if you need some functions, which are not present in BIOS (for example, to adjust the clock rate of PCI Express bus or control CPU multipliers for each Phenom core separately), you can use AMD OverDrive, which is fully supported by this motherboard. If you are interested in automatic overclocking modes, you can use D.O.T.3 (Dynamic Overclocking Technology). It's really convenient for those users, who don't want to sacrifice economy to overclocking. This technology is evolving. It used to overclock the system only under maximum CPU load. Now we can choose three overclocking levels, corresponding to different CPU loads. This is really important, because multicore processors are rarely loaded completely. If you start a single-thread application, it makes sense to raise CPU clock rate, even though the general load is relatively low. You can choose to raise the clock rate by 1-15% for each of three levels (20%, 50%, and 80% CPU load). What's important, this technology works well with Cool'n'Quiet. Unfortunately, voltage is not raised dynamically. Besides, you will have to adjust multipliers for memory and HyperTransport, if necessary. The motherboard allows to save BIOS settings in two profiles to CMOS, which facilitates manual overclocking. OverclockingIn order to evaluate motherboard and its BIOS, we overclock our testbed processor to a maximum stable level. We use all features of the motherboard in this test, including raising CPU voltage and adjusting multipliers and frequencies of system and peripheral buses, if necessary. But if, for example, reducing Hyper-Transport frequency does not improve overclocking, we leave the default multiplier. Memory is set to the standard frequency for a given memory module (multiplier correction), if a manufacturer does not publish any ways to improve memory overclocking. Otherwise, we analyze their efficiency as well. In order to evaluate stability of the overclocked system, we load Windows XP and run WinRAR performance test for 10 minutes (Tools - Benchmark and hardware test). As overclocking potential is an individual property of a given motherboard sample to some degree, we don't set the task to determine overclocking potential to within a single MHz. In practice, we are to find out whether CPU overclocking will be limited by a motherboard as well as to evaluate its behavior in non-standard modes, including automatic restoration of a correct frequency after a failed overclocking attempt, etc.
Overclocking results do not break any records, but they are quite high. Raising the frequency even by several MHz resulted in Windows startup errors, which couldn't be remedied by increasing voltages or by reducing multipliers. The function to roll back to the default clock rate after a failed overclocking attempt (when a computer freezes at startup) works correctly. PerformanceTestbed configurations:
We compared our product under review with the previously examined motherboard on the same chipset - Gigabyte MA790FX-DQ6.
Performance differences fall within fractions of a percent (and a measurement error). Out of doubt, it will be more interesting to test this motherboard with three or four graphics cards, especially as the company allocated much resources to perfecting drivers for efficient support of CrossFire configurations in the light of the Radeon HD 3870 X2 with two GPUs (it's no secret that software support is critical in this case). Bottom lineEven though the AMD 790FX chipset offers a great reserve for the future (in other words, its functionality is hardly necessary for a generic modern computer, even if it's assembled for games), MSI tried to design a practical motherboard. It may come in handy to users, who want to rig it up to maximum right now (including four graphics cards with two-slot cooling systems). Those who just want to upgrade their computers or assemble a new one may also like this motherboard, if they want a platform that can be expanded in future, and which has no expensive bells and whistles (they are often installed in motherboards on top chipsets to justify high prices). This motherboard on the manufacturer's web site. Write a comment below. No registration needed!
|
Platform · Video · Multimedia · Mobile · Other || About us & Privacy policy · Twitter · Facebook Copyright © Byrds Research & Publishing, Ltd., 1997–2011. All rights reserved. |