iXBT Labs - Computer Hardware in Detail






Latest News

 « Previous Day News Archive  

Intel Demonstrates Experimental, 48-core Intel Processor

Researchers from Intel Labs demonstrated an experimental, 48-core Intel processor, or "single-chip cloud computer," that rethinks many of the approaches used in today's designs for laptops, PCs and servers. This futuristic chip boasts about 10 to 20 times the processing engines inside today's most popular Intel Core-branded processors.

The long-term research goal is to add incredible scaling features to future computers that spur entirely new software applications and human-machine interfaces. The company plans to engage industry and academia next year by sharing 100 or more of these experimental chips for hands-on research in developing new software applications and programming models.

While Intel will integrate key features in a new line of Core-branded chips early next year and introduce six- and eight-core processors later in 2010, this prototype contains 48 fully programmable Intel processing cores, the most ever on a single silicon chip. It also includes a high-speed on-chip network for sharing information along with newly invented power management techniques that allow all 48 cores to operate extremely energy efficiently at as little as 25 watts, or at 125 watts when running at maximum performance (about as much as today's Intel processors and just two standard household light bulbs).

Intel plans to gain a better understanding of how to schedule and coordinate the many cores of this experimental chip for its future mainstream chips. For example, future laptops with processing capability of this magnitude could have "vision" in the same way a human can see objects and motion as it happens and with high accuracy.

Imagine, for example, someday interacting with a computer for a virtual dance lesson or on-line shopping that uses a future laptop's 3-D camera and display to show you a "mirror" of yourself wearing the clothes you are interested in. Twirl and turn and watch how the fabric drapes and how the color complements your skin tone.

This kind of interaction could eliminate the need of keyboards, remote controls or joysticks for gaming. Some researchers believe computers may even be able to read brain waves, so simply thinking about a command, such as dictating words, would happen without speaking.

Intel Labs has nicknamed this test chip a "single-chip cloud computer" because it resembles the organization of datacenters used to create a "cloud" of computing resources over the Internet, a notion of delivering such services as online banking, social networking and online stores to millions of users.

Cloud datacenters are comprised of tens to thousands of computers connected by a physically cabled network, distributing large tasks and massive datasets in parallel. Intel's new experimental research chip uses a similar approach, yet all the computers and networks are integrated on a single piece of Intel 45nm, high-k metal-gate silicon about the size of a postage stamp, dramatically reducing the amount of physical computers needed to create a cloud datacenter.

The concept chip features a high-speed network between cores to efficiently share information and data. This technique gives significant improvement in communication performance and energy efficiency over today's datacenter model, since data packets only have to move millimeters on chip instead of tens of meters to another computer system.

Application software can use this network to quickly pass information directly between cooperating cores in a matter of a few microseconds, reducing the need to access data in slower off-chip system memory. Applications can also dynamically manage exactly which cores are to be used for a given task at a given time, matching the performance and energy needs to the demands of each.

Related tasks can be executed on nearby cores, even passing results directly from one to the next as in an assembly line to maximize overall performance. In addition, this software control is extended with the ability to manage voltage and clock speed. Cores can be turned on and off or change their performance levels, continuously adapting to use the minimum energy needed at a given moment.

Programming processors with multiple cores is a well-known challenge for the industry as computer and software makers move toward many-cores on a single silicon chip. The prototype allows popular and efficient parallel programming approaches used in cloud datacenter software to be applied on the chip. Researchers from Intel, HP and Yahoo's Open Cirrus collaboration have already begun porting cloud applications to this 48 IA core chip using Hadoop, a Java software framework supporting data-intensive, distributed applications as demonstrated by Rattner today.

Intel plans to build 100 or more experimental chips for use by dozens of industrial and academic research collaborators around the world with the goal of developing new software applications and programming models for future many-core processors.

This milestone represents the latest achievement from Intel's Tera-scale Computing Research Program, aimed at breaking barriers to scaling future chips to 10s-100s of cores. It was co-created by Intel Labs at its Bangalore (India), Braunschweig (Germany) and Hillsboro, Ore. (U.S.) research centers. Details on the chip's architecture and circuits are scheduled to be published in a paper at the International Solid State Circuits Conference in February.

Source: Intel

 « Previous Day News Archive  

Latest headlines

ASUS Launches R9 200, R7 200 Series, Matrix R9 280X Graphics Cards

Apacer Launches SATA SLC-lite SSD solutions

ADATA Introduces a Stylish External HDD HC630

Samsung Introduces New Wireless Multiroom Speakers

WD Gives Consumers a Cloud of Their Own

Write a comment below. No registration needed!

blog comments powered by Disqus

  Most Popular Reviews More    RSS  

AMD Phenom II X4 955, Phenom II X4 960T, Phenom II X6 1075T, and Intel Pentium G2120, Core i3-3220, Core i5-3330 Processors

Comparing old, cheap solutions from AMD with new, budget offerings from Intel.
February 1, 2013 · Processor Roundups

Inno3D GeForce GTX 670 iChill, Inno3D GeForce GTX 660 Ti Graphics Cards

A couple of mid-range adapters with original cooling systems.
January 30, 2013 · Video cards: NVIDIA GPUs

Creative Sound Blaster X-Fi Surround 5.1

An external X-Fi solution in tests.
September 9, 2008 · Sound Cards

AMD FX-8350 Processor

The first worthwhile Piledriver CPU.
September 11, 2012 · Processors: AMD

Consumed Power, Energy Consumption: Ivy Bridge vs. Sandy Bridge

Trying out the new method.
September 18, 2012 · Processors: Intel
  Latest Reviews More    RSS  

i3DSpeed, September 2013

Retested all graphics cards with the new drivers.
Oct 18, 2013 · 3Digests

i3DSpeed, August 2013

Added new benchmarks: BioShock Infinite and Metro: Last Light.
Sep 06, 2013 · 3Digests

i3DSpeed, July 2013

Added the test results of NVIDIA GeForce GTX 760 and AMD Radeon HD 7730.
Aug 05, 2013 · 3Digests

Gainward GeForce GTX 650 Ti BOOST 2GB Golden Sample Graphics Card

An excellent hybrid of GeForce GTX 650 Ti and GeForce GTX 660.
Jun 24, 2013 · Video cards: NVIDIA GPUs

i3DSpeed, May 2013

Added the test results of NVIDIA GeForce GTX 770/780.
Jun 03, 2013 · 3Digests
  Latest News More    RSS  

Platform  ·  Video  ·  Multimedia  ·  Mobile  ·  Other  ||  About us & Privacy policy  ·  Twitter  ·  Facebook

Copyright © Byrds Research & Publishing, Ltd., 1997–2011. All rights reserved.