iXBT Labs - Computer Hardware in Detail






Latest News

 « Previous Day News Archive  

Toshiba Develops Higher Performance CMOS FET

Toshiba Corporation today announced that, together with IBM Corporation, it has developed a higher performance CMOS FET, a high priority for advanced system LSI. The new technology matches the highest possible performance, and opens the way for further advances in process technology.

High performance, low power and scalability have won CMOS technology a central place in semiconductor technology, a position now under threat as CMOS scaling edges towards fundamental physical limits that inhibit further advances in transistor performance and migration to finer process technology. As a consequence, the industry is seeking new ways to overcome these challenges. These approaches include adoption of new materials such as High-K and metal gates and new structures. Another way to improve performance is to increase the mobility of electron, or holes, through device channels; direct silicon bonding (DSB) wafers, a bulk CMOS hybrid type wafer that bonds (100) and (110) substrates, is a recognized candidate for advancing this approach.

In developing the new methodology, obtaining standard (100) silicon wafers by rotating the plane of the (100) layer by 45 degrees and thinning the DSB layer of the (110) substrate, Toshiba and IBM have successfully integrated technology with improving 10% delay of the ring oscillator than achievement compared to conventional DSB substrate 0 degree (100) wafers, which bonds to a wafer two silicon substrates, a (100) and a (110) substrate. The development improved the ring oscillator delay to a point of 30% than the standard (100) wafers. The achievement can be integrated with technologies that can reach even higher advances.

CMOS makes use of two types of transistors: positively-charged field effect transistors (PFETs), and negatively charged FETs (NFETs). For PFETs, hole mobility is known to achieve a higher performance on a substrate with (110) surface-orientation than on a substrate with (100) surface-orientation. However, for NFETs, electric charge mobility deteriorates on a substrate with (110) surface-orientation, compared to mobility on a substrate (100) surface-orientation. Toshiba and IBM achieved the newly announced performance using new hybrid-orientation technology fabricated on a hybrid substrate with different crystal orientations to achieve significant PFET performance improvement without any deterioration in NFET performance.

Toshiba is studying various technologies for future advanced devices, and believes that the new technology is a step forward to more powerful practical devices.

Appendix (PDF)

Source: Toshiba Corporation

 « Previous Day News Archive  

Write a comment below. No registration needed!

blog comments powered by Disqus

  Most Popular Reviews More    RSS  

AMD Phenom II X4 955, Phenom II X4 960T, Phenom II X6 1075T, and Intel Pentium G2120, Core i3-3220, Core i5-3330 Processors

Comparing old, cheap solutions from AMD with new, budget offerings from Intel.
February 1, 2013 · Processor Roundups

Inno3D GeForce GTX 670 iChill, Inno3D GeForce GTX 660 Ti Graphics Cards

A couple of mid-range adapters with original cooling systems.
January 30, 2013 · Video cards: NVIDIA GPUs

Creative Sound Blaster X-Fi Surround 5.1

An external X-Fi solution in tests.
September 9, 2008 · Sound Cards

AMD FX-8350 Processor

The first worthwhile Piledriver CPU.
September 11, 2012 · Processors: AMD

Consumed Power, Energy Consumption: Ivy Bridge vs. Sandy Bridge

Trying out the new method.
September 18, 2012 · Processors: Intel
  Latest Reviews More    RSS  

i3DSpeed, September 2013

Retested all graphics cards with the new drivers.
Oct 18, 2013 · 3Digests

i3DSpeed, August 2013

Added new benchmarks: BioShock Infinite and Metro: Last Light.
Sep 06, 2013 · 3Digests

i3DSpeed, July 2013

Added the test results of NVIDIA GeForce GTX 760 and AMD Radeon HD 7730.
Aug 05, 2013 · 3Digests

Gainward GeForce GTX 650 Ti BOOST 2GB Golden Sample Graphics Card

An excellent hybrid of GeForce GTX 650 Ti and GeForce GTX 660.
Jun 24, 2013 · Video cards: NVIDIA GPUs

i3DSpeed, May 2013

Added the test results of NVIDIA GeForce GTX 770/780.
Jun 03, 2013 · 3Digests
  Latest News More    RSS  

Platform  ·  Video  ·  Multimedia  ·  Mobile  ·  Other  ||  About us & Privacy policy  ·  Twitter  ·  Facebook

Copyright © Byrds Research & Publishing, Ltd., 1997–2011. All rights reserved.