iXBT Labs - Computer Hardware in Detail

Platform

Video

Multimedia

Mobile

Other

Latest News


 « Previous Day News Archive  

IBM Research Unveils Breakthrough In Solar Farm Technology

IBM announced a research breakthrough in photovoltaics technology that could significantly reduce the cost of harnessing the Sun's power for electricity.

By mimicking the antics of a child using a magnifying glass to burn a leaf or a camper to start a fire, IBM scientists are using a large lens to concentrate the Sun's power, capturing a record 230 watts onto a centimeter square solar cell, in a technology known as concentrator photovoltaics, or CPV. That energy is then converted into 70 watts of usable electrical power, about five times the electrical power density generated by typical cells using CPV technology in solar farms.

If it can overcome additional challenges to move this project from the lab to the fab, IBM believes it can significantly reduce the cost of a typical CPV based system. By using a much lower number of photovoltaic cells in a solar farm and concentrating more light onto each cell using larger lenses, IBM's system enables a significant cost advantage in terms of a lesser number of total components.

For instance, by moving from a 200 sun system ("one sun" is a measurement equal to the solar power incident at noon on a clear summer day), where about 20 watts per square centimeter of power is concentrated onto the cell, to the IBM Lab results of a 2300 sun system, where approximately 230 watts per square centimeter are concentrated onto the cell system, the IBM system cuts the number of photovoltaic cells and other components by a factor of 10.

The trick lies in IBM's ability to cool the tiny solar cell. Concentrating the equivalent of 2000 suns on such a small area generates enough heat to melt stainless steel, something the researchers experienced first hand in their experiments. But by borrowing innovations from its own R&D in cooling computer chips, the team was able to cool the solar cell from greater than 1600 degrees Celsius to just 85 degrees Celsius.

The initial results of this project will be presented at the 33rd IEEE Photovoltaic Specialists conference today, where the IBM researchers will detail how their liquid metal cooling interface is able to transfer heat from the solar cell to a copper cooling plate much more efficiently than anything else available today.

The IBM research team developed a system that achieved breakthrough results by coupling a commercial solar cell to an advanced IBM liquid metal thermal cooling system using methods developed for the microprocessor industry.

Specifically, the IBM team used a very thin layer of a liquid metal made of a gallium and indium compound that they applied between the chip and a cooling block. Such layers, called thermal interface layers, transfer the heat from the chip to the cooling block so that the chip temperature can be kept low. The IBM liquid metal solution offers the best thermal performance available today, at low costs, and the technology was successfully developed by IBM to cool high power computer chips earlier.

While concentrator-based photovoltaics technologies have been around since the 1970s, they have received renewed interest in recent times. With very high concentrations, they have the potential to offer the lowest-cost solar electricity for large-scale power generation, provided the temperature of the cells can be kept low, and cheap and efficient optics can be developed for concentrating the light to very high levels.

IBM is exploring four main areas of photovoltaic research: using current technologies to develop cheaper and more efficient silicon solar cells, developing new solution processed thin film photovoltaic devices, concentrator photovoltaics, and future generation photovoltaic architectures based upon nanostructures such as semiconductor quantum dots and nanowires.

The goal of the projects is to develop efficient photovoltaic structures that would reduce the cost, minimize the complexity, and improve the flexibility of producing solar electric power.

Source: IBM

 « Previous Day News Archive  

Latest headlines


ASUS Launches R9 200, R7 200 Series, Matrix R9 280X Graphics Cards

Apacer Launches SATA SLC-lite SSD solutions

ADATA Introduces a Stylish External HDD HC630

Samsung Introduces New Wireless Multiroom Speakers

WD Gives Consumers a Cloud of Their Own


Write a comment below. No registration needed!




blog comments powered by Disqus

  Most Popular Reviews More    RSS  

AMD Phenom II X4 955, Phenom II X4 960T, Phenom II X6 1075T, and Intel Pentium G2120, Core i3-3220, Core i5-3330 Processors

Comparing old, cheap solutions from AMD with new, budget offerings from Intel.
February 1, 2013 · Processor Roundups

Inno3D GeForce GTX 670 iChill, Inno3D GeForce GTX 660 Ti Graphics Cards

A couple of mid-range adapters with original cooling systems.
January 30, 2013 · Video cards: NVIDIA GPUs

Creative Sound Blaster X-Fi Surround 5.1

An external X-Fi solution in tests.
September 9, 2008 · Sound Cards

AMD FX-8350 Processor

The first worthwhile Piledriver CPU.
September 11, 2012 · Processors: AMD

Consumed Power, Energy Consumption: Ivy Bridge vs. Sandy Bridge

Trying out the new method.
September 18, 2012 · Processors: Intel
  Latest Reviews More    RSS  

i3DSpeed, September 2013

Retested all graphics cards with the new drivers.
Oct 18, 2013 · 3Digests

i3DSpeed, August 2013

Added new benchmarks: BioShock Infinite and Metro: Last Light.
Sep 06, 2013 · 3Digests

i3DSpeed, July 2013

Added the test results of NVIDIA GeForce GTX 760 and AMD Radeon HD 7730.
Aug 05, 2013 · 3Digests

Gainward GeForce GTX 650 Ti BOOST 2GB Golden Sample Graphics Card

An excellent hybrid of GeForce GTX 650 Ti and GeForce GTX 660.
Jun 24, 2013 · Video cards: NVIDIA GPUs

i3DSpeed, May 2013

Added the test results of NVIDIA GeForce GTX 770/780.
Jun 03, 2013 · 3Digests
  Latest News More    RSS  

Platform  ·  Video  ·  Multimedia  ·  Mobile  ·  Other  ||  About us & Privacy policy  ·  Twitter  ·  Facebook


Copyright © Byrds Research & Publishing, Ltd., 1997–2011. All rights reserved.