iXBT Labs - Computer Hardware in Detail

Platform

Video

Multimedia

Mobile

Other

Latest News


 « Previous Day News Archive  

IBM Scientists Harness "Slow Light" For Optical Communications

IBM announced its researchers have created a tiny device that represents a big advance toward the eventual use of light in place of electricity in the connection of electronic components, potentially leading to vast improvements in the performance of computers and other electronic systems.

As described in today's issue of the journal Nature, IBM scientists were able to slow light down to less than 1/300th of its usual speed by directing it down a carefully designed channel of perforated silicon called a "photonic crystal waveguide." Further, the unique design of the device allows the light's speed to be varied over a wide range simply by applying an electrical voltage to the waveguide.

Researchers have known for some years how to slow light to a crawl under laboratory conditions, but actively controlling the light speed on a silicon chip, using standard silicon with standard micro- and nanoelectronic fabrication technology, is a first. The device's small size, use of standard semiconductor materials, and ability to more closely control this "slow light" could make the technology useful for building ultra-compact optical communications circuits that are practical for integration into computer systems.

While chip performance has continued to increase, electronic systems don't always reap the full benefits. Just as traffic congestion can hinder commerce by limiting the flow of products and materials within a busy city, the inability to more quickly move information around within electronic systems is one of the biggest bottlenecks in electronic design today. The work announced by IBM could help relieve such constraints.

Scientists have searched for practical ways to use light to speed communication between the components within a computer. But, to be practical, the components to support such an optical network will need to provide excellent control over the light signal, while also being very small and inexpensive to manufacture. The IBM work addresses several pieces of this puzzle.


Futuristic silicon chip with monolithically integrated photonic and electronic circuits

The IBM team succeeded using a photonic crystal waveguide - a thin slab of silicon punctuated by regular arrays of holes that scatter light. The pattern and size of the holes gives the material a very high refractive index -- the higher the refractive index, the slower the light. Heating the waveguide locally with a small electrical current alters the refractive index, allowing the speed of light to be quickly tuned over a large range with very low applied electric power.

The active area of the IBM device is microscopically small, indicating the possibility of complex light-based circuits with footprints not much larger than semiconductor circuits. The manufacturing processes used to build the device are available in nearly any semiconductor factory. The capabilities demonstrated in today's Nature article could be applied to create a variety of nanophotonic components such as optical delay lines, optical buffers, and even optical memory, all of which would be useful in building computer systems knitted together by powerful optical communications networks.

The report on this work, "Active control of slow light on a chip with photonic crystal waveguides" by Yurii A. Vlasov, Martin O'Boyle, Hendrik F. Hamann, and Sharee J. McNab of IBM's T.J.Watson Research Center in Yorktown Heights, N.Y. is published in the November 3 issue of Nature. This work was partially supported by the Defense advanced Research Agency (DARPA) through the Defense Sciences Office program "Slowing, Storing and Processing Light".

Source: IBM

 « Previous Day News Archive  

Write a comment below. No registration needed!




blog comments powered by Disqus

  Most Popular Reviews More    RSS  

AMD Phenom II X4 955, Phenom II X4 960T, Phenom II X6 1075T, and Intel Pentium G2120, Core i3-3220, Core i5-3330 Processors

Comparing old, cheap solutions from AMD with new, budget offerings from Intel.
February 1, 2013 · Processor Roundups

Inno3D GeForce GTX 670 iChill, Inno3D GeForce GTX 660 Ti Graphics Cards

A couple of mid-range adapters with original cooling systems.
January 30, 2013 · Video cards: NVIDIA GPUs

Creative Sound Blaster X-Fi Surround 5.1

An external X-Fi solution in tests.
September 9, 2008 · Sound Cards

AMD FX-8350 Processor

The first worthwhile Piledriver CPU.
September 11, 2012 · Processors: AMD

Consumed Power, Energy Consumption: Ivy Bridge vs. Sandy Bridge

Trying out the new method.
September 18, 2012 · Processors: Intel
  Latest Reviews More    RSS  

i3DSpeed, September 2013

Retested all graphics cards with the new drivers.
Oct 18, 2013 · 3Digests

i3DSpeed, August 2013

Added new benchmarks: BioShock Infinite and Metro: Last Light.
Sep 06, 2013 · 3Digests

i3DSpeed, July 2013

Added the test results of NVIDIA GeForce GTX 760 and AMD Radeon HD 7730.
Aug 05, 2013 · 3Digests

Gainward GeForce GTX 650 Ti BOOST 2GB Golden Sample Graphics Card

An excellent hybrid of GeForce GTX 650 Ti and GeForce GTX 660.
Jun 24, 2013 · Video cards: NVIDIA GPUs

i3DSpeed, May 2013

Added the test results of NVIDIA GeForce GTX 770/780.
Jun 03, 2013 · 3Digests
  Latest News More    RSS  

Platform  ·  Video  ·  Multimedia  ·  Mobile  ·  Other  ||  About us & Privacy policy  ·  Twitter  ·  Facebook


Copyright © Byrds Research & Publishing, Ltd., 1997–2011. All rights reserved.