[an error occurred while processing this directive]
« | » |
First of all, let me tell you a simple piece of news: there are no motherboards for overclockers by design. That's just a myth. There are BIOS versions for overclockers. Such a BIOS can be written for any motherboard. There are only two kinds of motherboards: correctly designed / of a high quality, and incorrectly designed / of a low quality. Other motherboards are just variations between the above mentioned extremities. A correctly designed motherboard of a high quality possesses some safety margin, which allows it to operate even in non-standard modes (to a certain level, of course). A "bad" motherboard is already in strained mode, so any deviations from it result in failures. On the whole, an overclocked motherboard has only one simple task: to "die" later than the CPU or memory. Such a motherboard will do for overclocking experiments. Is it designed for overclockers? Sure it isn't! It's just a well designed motherboard of a high quality and these properties will be useful even if no overclocking is expected.
As it has been already mentioned above, the only "advantage" of motherboards "for overclockers" is that BIOS allows to control voltage-to-frequency converters as well as to specify bus frequencies at intermediate FSB frequencies. You should understand that this option is physically available in any motherboard: When BIOS initializes, it determines proper frequencies and voltages and initializes the chips correspondingly. Motherboards for overclockers just allow to control these parameters "externally" (via BIOS settings). Motherboards, which do not support overclocking, hide these features and this procedure is carried out automatically. In 99% of cases, the voltage regulators and frequency generators are absolutely the same on both motherboard kinds. A "special overclockers' design" of motherboards is a purely marketing notion. Design can be good and reliable or bad and weak. ASUS has never manufactured motherboards "designed for overclockers", but its boards are mostly very stable in overclocked modes. Up to recently, Intel hasn't accepted overclocking at all. This feature was blocked, but still these motherboards were well designed and reliable.
You can retort: "That's right, this improved reliability is the essence of motherboards for overclockers!" I have to disappoint you: in fact, the safety margin required is not that large, and so almost any well designed motherboard of a high quality may be considered "a motherboard for overclockers". Which MUST have a safety margin, and it has nothing to do with overclocking. That is, "designs for overclocking" are a myth. Of course, if we don't mean just a normal high-quality design. Why? Because (see above) the only objective of a motherboard in an overclocked mode is to die later than the other components. That's why no one needs a motherboard with 150% safety margin: the other components will die earlier anyway. A tad later I'll tell you how to estimate the safety margin of a motherboard (or its lack) by outward signs. Of course, these methods are not complete, only tests can give 100% guarantee, but they raise your chances that a given motherboard will operate well in the overclocked mode.
What concerns motherboards "intended for overclockers", unfortunately you cannot use this label to evaluate motherboards without tests, because it's compromised by purely marketing issues. The manufacturer may have really improved the design and increased the safety margin of the motherboard. But it may have skipped the trouble and just expanded BIOS with frequency generator and voltage regulator settings. The latter is much easier to do, and unfortunately it allows a 100% effect of a "motherboard for overclockers" in terms of technical characteristics provided in specifications. Below you may read about outward signs of motherboards for overclockers, like advanced heatsinks and capacitors...
You would have never mixed up a motherboard "designed for overclockers" with other boards. In fact, it should have had at least a six-layer (standard PCB has four layers) or even eight-layer PCB for maximum straight conductors. Minimum number of memory slots: two or even one (two slots would have been necessary on motherboards with two-channel chipsets); those slots should have been located as close to the northbridge as possible (or close to the processor in case of AMD64 architecture). Northbridge and CPU must be maximum close to each other as well. There must be no additional controllers at all, but if they are – let them be as far from the northbridge and CPU as possible. Southbridge must also be exiled there. VRM had better be on a separate card or at least it should be located on a separate large area, back from CPU... Does it ring any bells? Exactly! It's almost a classic description of a server motherboard. Well, such boards just have more memory slots. So, Mister Overclocker, that's your favourite REAL "design for overclockers". That's because it's just a maximum reliable design, which is "convenient for chips". And what you really drive is just a Volkswagen Cadet with stiffening ribs and improved geometry of the antiwing.
« | » |
[an error occurred while processing this directive]