[an error occurred while processing this directive]
« | » |
We also use special patterns in Intel IOmeter to imitate hard disks operating in various applications. At first — traditional popular patterns offered by Intel and Storagereview.com web site:
The old 180GXP and 7K250 models with their small buffers look the most advantageous in large query queues, though in small queues the senior 7K250 model is leading. 7K400 hard disks lag behind almost all other predecessors in this pattern, though not always significantly. I also want to note that the graphs for SATA and UATA Kurofune models are almost matching here (they overlap each other) and they both lag behind the 7K250 SATA model at a constant gap (which, by the way, is demonstrated by many other patterns in IOmeter test below).
File Server pattern offers almost identical picture to that of the Database Server pattern. We can only note that the model in quiet slow seek mode is even farther behind.
But the Web Server pattern, where there are no write requests, offers a completely different picture: the old 180GXP is obviously outscored by its younger "brothers", both 7K250 models are leading here, even despite the small buffer in one of them. Though the 7K400 models also look good — almost like leaders. And only the "quiet" model is singing a lullaby. :)
Having averaged (in terms of geometry, without weight coefficients) the results of the three previous server patterns, we got both 7K250 models in the lead (the junior model with 2 MB cache is the first due to its better results with a large request queue), the old 180GXP is the third, while 7K400 novices are the last, being outscored by their predecessors by 3-7%. So, it's not a good idea to install the 7K400 in servers that actively operate with small portions of data.
What concerns the Workstation pattern, it has the same leaders as in server patterns. The three-platter 180GXP even slightly outscored the three-platter 7K250 due to more effective operations with a large request queue, though the latter is still better at small loads. 7K400 hard disks are again outsiders here.
« | » |